最近傍分類のサンプル使用です。各クラスの決定範囲を図示します。
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets from sklearn.inspection import DecisionBoundaryDisplay n_neighbors = 15 # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could avoid this ugly # slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target # Create color maps cmap_light = ListedColormap(["orange", "cyan", "cornflowerblue"]) cmap_bold = ["darkorange", "c", "darkblue"] for weights in ["uniform", "distance"]: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) _, ax = plt.subplots() DecisionBoundaryDisplay.from_estimator( clf, X, cmap=cmap_light, ax=ax, response_method="predict", plot_method="pcolormesh", xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], shading="auto", ) # Plot also the training points sns.scatterplot( x=X[:, 0], y=X[:, 1], hue=iris.target_names[y], palette=cmap_bold, alpha=1.0, edgecolor="black", ) plt.title( "3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights) ) plt.show()